Combining Paclitaxel with ABT-263 Has a Synergistic Effect on Paclitaxel Resistant Prostate Cancer Cells

نویسندگان

  • Chihuei Wang
  • Shih-Bo Huang
  • Min-Chi Yang
  • Yi-Tsen Lin
  • I-Hung Chu
  • Ya-Ni Shen
  • Yueh-Ho Chiu
  • Shao-Hung Hung
  • Lin Kang
  • Yi-Ren Hong
  • Chung-Hwan Chen
چکیده

We assessed the capability of paclitaxel, one of the taxanes, to induce death in two prostate cancer lines, LNCaP and PC3. Paclitaxel drove an apoptotic pathway in LNCaP, but not in PC3 cells, in response to G2/M arrest. An examination of the levels of anti-apoptotic proteins revealed that Bcl-xl was much higher in PC3 cells than in LNCaP cells and Bcl2 could be detected only in PC3 cells, not in LNCaP cells. Knocking down Bcl-xl enhanced paclitaxel-induced apoptosis in LNCaP cells, while we were unable to knock down Bcl-xl efficiently in PC3 cells. Significantly, a comparison of ABT-263, a specific inhibitor of Bcl2 and Bcl-xl, with ABT-199, a Bcl2 selective inhibitor, disclosed that only ABT-263, not ABT-199, could induce apoptosis in LNCaP and PC3 cells. The results indicate that Bcl-xl has a protective role against paclitaxel-induced apoptosis in LNCaP and PC3 cells, and its overexpression causes the paclitaxel resistance seen in PC3 cells. Interestingly, combined paclitaxel with ABT-263 to treat LNCaP and PC3 cells demonstrated synergistic apoptosis activation, indicating that ABT-263 could enhance paclitaxel-induced apoptosis in LNCaP cells and overcome Bcl-xl overexpression to trigger paclitaxel-induced apoptosis in PC3 cells. We also observed that the activation of apoptosis in LNCaP cells was more efficient than in PC3 cells in response to paclitaxel plus ABT-263 or to ABT-263 alone, suggesting that the apoptosis pathway in PC3 cells might have further differences from that in LNCaP cells even after Bcl-xl overexpression is accounted for.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synergistic Anticancer Effect of Paclitaxel and Noscapine on Human Prostate Cancer Cell Lines

Paclitaxel is the one of the most common chemotherapeutic drugs used for the treatment of prostate cancer. However, its current clinical utility has been limited due to numerous serious side effects and drug resistance. Noscapine is an antitussive opium alkaloid that showed antitumor activity against a variety of cancer while has not exhibited severe side effects. This study investigates the a...

متن کامل

Synergistic Anticancer Effect of Paclitaxel and Noscapine on Human Prostate Cancer Cell Lines

Paclitaxel is the one of the most common chemotherapeutic drugs used for the treatment of prostate cancer. However, its current clinical utility has been limited due to numerous serious side effects and drug resistance. Noscapine is an antitussive opium alkaloid that showed antitumor activity against a variety of cancer while has not exhibited severe side effects. This study investigates the a...

متن کامل

Bcl-2 family inhibition sensitizes human prostate cancer cells to docetaxel and promotes unexpected apoptosis under caspase-9 inhibition

Docetaxel (DTX) is a useful chemotherapeutic drug for the treatment of hormone-refractory prostate cancer. However, emergence of DTX resistance has been a therapeutic hurdle. In this study, we investigated the effect of combining DTX with Bcl-2 family inhibitors using human prostate cancer cell lines (PC3, LNCaP, and DU145 cells). PC3 cells were less sensitive to DTX than were the other two cel...

متن کامل

Targeting of apoptotic pathways by SMAC or BH3 mimetics distinctly sensitizes paclitaxel-resistant triple negative breast cancer cells

Standard chemotherapy is the only systemic treatment for triple-negative breast cancer (TNBC), and despite the good initial response, resistance remains a major therapeutic obstacle. Here, we employed a High-Throughput Screen to identify targeted therapies that overcome chemoresistance in TNBC. We applied short-term paclitaxel treatment and screened 320 small-molecule inhibitors of known target...

متن کامل

Navitoclax (ABT-263) accelerates apoptosis during drug-induced mitotic arrest by antagonizing Bcl-xL.

Combining microtubule-targeting antimitotic drugs with targeted apoptosis potentiators is a promising new chemotherapeutic strategy to treat cancer. In this study, we investigate the cellular mechanism by which navitoclax (previously called ABT-263), a Bcl-2 family inhibitor, potentiates apoptosis triggered by paclitaxel and an inhibitor of kinesin-5 (K5I, also called a KSP inhibitor), across a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015